Bacterial biofilms, begone

Posted: August 3rd, 2017

Scanning electron microscope images of (a) the chitosan film, (b) the chitosan-copper metal organic framework film at 500x magnification, (c) the chitosan-copper metal organic framework film at a higher magnification, and (d) an X-ray image of the film that shows the copper in pink.

by Anne Manning

By some estimates, bacterial strains resistant to antibiotics – so-called superbugs – will cause more deaths than cancer by 2050.

Colorado State University biomedical and chemistry researchers are using creative tactics to subvert these superbugs and their mechanisms of invasion. In particular, they’re devising new ways to keep harmful bacteria from forming sticky matrices called biofilms – and to do it without antibiotic drugs.

Researchers from the laboratory of Melissa Reynolds, associate professor of chemistry and the School of Biomedical Engineering, have created a new material that inhibits biofilm formation of the virulent superbug Pseudomonas aeruginosa. Their material, described in Advanced Functional Materials, could form the basis for a new kind of antibacterial surface that prevents infections and reduces our reliance on antibiotics.

Bella Neufeld, the first author and graduate student who led the research, explained that her passion for finding new ways to fight superbugs is motivated by how adaptive and impenetrable they are, especially when they are allowed to form biofilms.

“Biofilms are nasty once they form, and incredibly difficult to get rid of,” Neufeld said.

To read the full article, please visit SOURCE, and check out their interview with 9News Denver!