Sara Robinson
Speaker's Institution
Colorado State University
Chemistry A101
Mixer Time
Mixer Time
Chemistry B101E
Calendar (ICS) Event
Additional Information


A key interest in chemical synthesis research is the conversion of less desirable resources to value-added products.[1] Hydrogen peroxide is an increasingly valuable feedstock with applications as an antiseptic agent and wastewater treatment aid, a strong oxidant for chemical synthesis, and even an energy-dense catholyte for fuel cell applications.[2,3] Current synthesis methods for hydrogen peroxide require electrolytic conditions, toxic or rare transition metal catalysts, or high-purity aqueous and organic solvents to avoid catalyst poisoning or degradation [2,4], making these approaches energy-intensive and reliant on limited resources. Photocatalytic methods – which utilize light irradiation and a photocatalyst to facilitate chemical reactions – have been explored recently to achieve more sustainable hydrogen peroxide production and, in some cases, can use extremely abundant seawater as an effective solvent.[3-7] This paper by Ren and co-workers demonstrates the formation of hydrogen peroxide from real seawater using a single-atom photocatalyst (SAPC) composed of atomically dispersed manganese on a carbon-nitride scaffold.[7] In this seminar, I will discuss the evidence and findings of the paper, and the implications of this research in the larger context of photocatalytic hydrogen peroxide synthesis.



[1] Wang, X; Li, C.; Lam, C. H.; Subramanian, K.; Qin, Z.-H.; Mou, J.-H.; Jin, M.; Singh Chopra, S.; Singh, V. Sik Ok, Y.; Yan, J.; Li, H.-Y.; Sze Ki Lin, C. J. Hazard. Mater. 2022, 423A, 127023.

[2] Campos-Martin, J. M.; Blanco-Brieva, G.; Fiero, J. L. G. Angew. Chem. Int. Ed. 2006, 45, 6962 – 6984.

[3] Mase, K.; Toneda, M.; Yamada, Y.; Fukuzumi, S. Nat. Commun. 2016, 7:11470.

[4] Sun, Y.; Han, L.; Strasser, P. Chem. Soc. Rev. 2020, 49, 6605-6631.

[5] Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; Liu, B.; Ohno, T. Nat. Catal. 2021, 4, 374-384.

[6] Fu, C.; Liu, L.; Li, Z.; Wei, Y.; Huang, W.; Zhang, X. J. Phys. Chem. Lett. 2023, 34, 7690-7696.

[7] Ren, P.; Zhang, T.; Jain, N.; Ching, H. Y. V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L. Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S. Bals, S.; Das, S. J. Am. Chem. Soc. 2023, 145, 16584-16596.