Physical Faculty
His research interests at Colorado State will focus on the thermodynamics of nanoscale self-assembly processes in block copolymer composite materials and their applications in a variety of environments, including polymer-based photovoltaics, bio-enzymatic fuel cells, chemical and biological sensing devices, targeted chemical delivery, and hydrogel-based shape memory materials.
Laser optical techniques for analysis of cell surface phenomena; microcalorimetry
Conformation and potential energy surfaces of isolated and solvated non-rigid molecules, nucleation, growth, and structure of van der Waals clusters in the gas phase, energy dynamics and chemical reaction in van der Waals clusters, spectroscopy of reactive intermediates, metal oxide cluster catalysis
Molecular biophysics; reaction kinetics on membrane surfaces; single-molecule imaging; time-resolved fluorescence spectroscopy.
Plasma chemistry, reactivity of radicals with surfaces using LIF and molecular beam techniques. Plasma polymerization deposition and etching of materials. Characterization of plasma synthesized thin films.
Develop computational catalyst design and apply computational tools to both enzymatic and catalytic conversion processes of sustainable chemicals and polymers from plants (biomass) for a new bio-energy infrastructure. Mechanism-driven discovery of biopolymer upgrading and material design via molecular and quantum mechanics. Machine learning approach in catalyst design, and (bio)fuel and chemical property prediction tool kit development.
Structure & dynamics in condensed phase systems; two-dimensional infrared spectroscopy.
Dynamics of molecules and chemistry in the condensed phase, especially molecular assemblies, molecules in confined environments. Fundamental properties and processes governing cryopreservation.
Prof. Menoni’s research bridges from material to optical sciences. She is engaged in the growth and characterization of high bandgap oxide materials for the engineering of interference coatings for high power lasers. She is also actively involved in using bright coherent beams of light of wavelengths between 10-50 nm for optics applications such as imaging and ablation.
Theoretical characterization of reaction mechanisms in homogeneous and heterogeneous catalysis, new electronic structure techniques, development of force fields or model potentials for chemical reactivity studies.
Atmospheric chemistry via studies in gas phase kinetics and photochemistry, heterogeneous chemistry, atmospheric field observations, and analyses of modeling results; Furthering understanding of the earth’s atmosphere, diagnosing, understanding of, and providing solutions to environmental issues of the stratospheric ozone depletion, air quality, and climate change; Provide new insights into gas phase chemical reactions, reactions on surfaces and in liquids, and photochemical processes; Developing new experimental methods both for laboratory studies and atmospheric measurements.
The Sambur group synthesizes nanomaterials and develops imaging techniques to correlate chemical and structural properties with function/performance.
Computational design, simulation, and experimental validation of new enzymes, and crystalline biomolecular assemblies. We convert porous protein crystals into “3D molecular pegboards” for the controlled assembly of nanoparticles, enzymes, fluorescent proteins, oligonucleotides, and other functional molecules.
Statistical mechanics, dynamics of colloidal and polymeric fluids, structure and dynamics of colloidal fluids under non-uniform flow conditions.
Bioanalytical chemistry, single molecule detection and spectroscopy, laser spectroscopy, optical and scanning probe microscopy, optical biosensors for pharmaceutical and clinical chemistry.
My group harnesses synthetic inorganic and materials chemistry to enable the next generation of magnetic resonance imaging and photocatalytic applications.