Physical Faculty
Molecular biophysics; reaction kinetics on membrane surfaces; single-molecule imaging; time-resolved fluorescence spectroscopy.
Develop computational catalyst design and apply computational tools to both enzymatic and catalytic conversion processes of sustainable chemicals and polymers from plants (biomass) for a new bio-energy infrastructure. Mechanism-driven discovery of biopolymer upgrading and material design via molecular and quantum mechanics. Machine learning approach in catalyst design, and (bio)fuel and chemical property prediction tool kit development.
Structure & dynamics in condensed phase systems; two-dimensional infrared spectroscopy.
Dynamics of molecules and chemistry in the condensed phase, especially molecular assemblies, molecules in confined environments. Fundamental properties and processes governing cryopreservation.
Prof. Menoni’s research bridges from material to optical sciences. She is engaged in the growth and characterization of high bandgap oxide materials for the engineering of interference coatings for high power lasers. She is also actively involved in using bright coherent beams of light of wavelengths between 10-50 nm for optics applications such as imaging and ablation.
The Paton group uses computational and data-driven approaches to make synthetic chemistry more predictable. We develop tools to predict molecular properties, design new functional molecules and optimize synthetic routes. Our approach combines quantum mechanical calculations, physical organic chemistry and machine learning.
Theoretical characterization of reaction mechanisms in homogeneous and heterogeneous catalysis, new electronic structure techniques, development of force fields or model potentials for chemical reactivity studies.
Atmospheric chemistry via studies in gas phase kinetics and photochemistry, heterogeneous chemistry, atmospheric field observations, and analyses of modeling results; Furthering understanding of the earth’s atmosphere, diagnosing, understanding of, and providing solutions to environmental issues of the stratospheric ozone depletion, air quality, and climate change; Provide new insights into gas phase chemical reactions, reactions on surfaces and in liquids, and photochemical processes; Developing new experimental methods both for laboratory studies and atmospheric measurements.
The Sambur group synthesizes nanomaterials and develops imaging techniques to correlate chemical and structural properties with function/performance.
Computational design, simulation, and experimental validation of new enzymes, and crystalline biomolecular assemblies. We convert porous protein crystals into “3D molecular pegboards” for the controlled assembly of nanoparticles, enzymes, fluorescent proteins, oligonucleotides, and other functional molecules.
Statistical mechanics, dynamics of colloidal and polymeric fluids, structure and dynamics of colloidal fluids under non-uniform flow conditions.
Analytical and Physical Chemistry; DNA and RNA biophysics; Nanoscience; Single Molecule Detection and Spectroscopy; Optical, Scanning Probe, and Electron Microscopy; Super-Resolution Imaging